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Abstract
We consider the effect of the magnetic field background in the form of a tube
of the finite transverse size on the vacuum of the quantized charged massive
scalar field which is subject to the Dirichlet boundary condition at the tube.
It is shown that if the Compton wavelength associated with the scalar field
considerably exceeds the transverse size of the tube, then the vacuum energy
which is finite and periodic in the value of the magnetic flux enclosed in the
tube is induced on a plane transverse to the tube. Some consequences for
generic features of the vacuum polarization in the cosmic-string background
are discussed.

PACS numbers: 11.27.+d, 11.10.Kk, 11.15.Tk

1. Introduction

The emergence of calculable and detectable vacuum energy as a consequence of imposing
external boundary conditions in quantum field theory was predicted more than 60 years ago
by Casimir [1]. Since then the vacuum energy of fluctuating quantum fields that are subject to
boundary conditions has been studied in various setups (see, e.g., reviews in [2–4]). Usually,
the boundary manifold is chosen to be noncompact disconnected (e.g. two parallel infinite
plates, as generically in [1]) or closed compact (e.g. box or sphere); see [2–4].

In the present paper, we shall consider the boundary manifold which is noncompact
connected and has the form of an infinite tube in three-dimensional space. As has been
first demonstrated by Aharonov and Bohm [5] in the framework of first-quantized theory,
the magnetic flux enclosed in such a tube affects the properties of quantum matter outside
the tube. This effect which is named after them has no analogues in classical physics and
is characterized by the periodic dependence on the value of the flux, vanishing at integer
multiples of the London flux value, while being maximal at half of the London flux value.
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In the framework of second-quantized theory, one is interested in the vacuum polarization
effects which are induced outside the tube by the magnetic flux enclosed in the tube. In
particular, the question is whether the vacuum energy is induced. If this is the case, then this
may be denoted as the Casimir–Bohm–Aharonov effect (see also [6]).

It should be noted that initially [5] the Bohm–Aharonov effect was considered under the
assumption that the transverse size of the tube is zero, which corresponds to the singular
magnetic vortex configuration. Taking into account the finite transverse size of the tube was
an important task, since in reality a vortex-forming solenoid is of finite width3. This task was
fulfilled once before, see [7, 8]. Although, unlike the case of a singular vortex, the quantum-
mechanical problem in the case of a finite-thickness vortex is not exactly solvable, a thorough
analysis has been carried out, and, in particular, it has been shown that the Bohm–Aharonov
effect disappears at a sufficiently large thickness of an impenetrable magnetic vortex [7].

Returning to quantum field theory, and, appropriately, to the Casimir–Bohm–Aharonov
effect, we note that up to now this effect was considered for the case of a singular magnetic
vortex only [6, 9–11]. Therefore, the aim of the present paper is to make a first step in the
study of the dependence on the thickness of an impenetrable magnetic vortex. It should be
noted that vacuum polarization effects which are induced by magnetic fluxes of finite thickness
were considered by different authors, see [12–16]. However, these authors are concerned with
the case when there is no boundary at all and the region of the flux is penetrable for the
quantized matter fields; therefore, the obtained results have no relation neither to the Casimir,
nor to the Bohm–Aharonov effects. In the present paper we shall show that, similar to the
Bohm–Aharonov effect, the Casimir–Bohm–Aharonov effect disappears at a sufficiently large
thickness of the vortex. The second-quantized matter will be represented by the charged
massive scalar field.

In the next section a general definition of the vacuum energy density for the quantized
scalar field is reviewed and a starting expression for its renormalized value is given. In
section 3 this value is calculated numerically in the case of (2 + 1)-dimensional space-time.
Finally, the results are summarized and discussed in section 4.

2. Vacuum energy density

The operator of the quantized charged scalar field is represented in the form

�(x0, x) =
∑∫
λ

1√
2Eλ

[
e−iEλx

0
ψλ(x) aλ + eiEλx

0
ψ−λ(x) b

†
λ

]
, (1)

where a
†
λ and aλ

(
b
†
λ and bλ

)
are the scalar particle (antiparticle) creation and destruction

operators satisfying commutation relations; the wavefunctions ψλ(x) form a complete set of
solutions to the stationary Klein–Gordon equation

(−∇2 + m2)ψλ(x) = E2
λψ(x), (2)

where ∇ is the covariant derivative in an external (background) field and m is the mass
of the scalar particle; λ is the set of parameters (quantum numbers) specifying the state;
Eλ = E−λ > 0 is the energy of the state; the symbol

∑∫
λ

denotes summation over discrete and

integration (with a certain measure) over continuous values of λ.

3 Also, a real solenoid is of finite length. However, in the case when the width of the solenoid is much smaller than
its length and the motion of a quantum-mechanical particle is confined to a plane which is transverse to the solenoid,
the effects of the width prevail over the effects of the length.
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We are considering the static background in the form of the cylindrically symmetric
magnetic vortex of finite thickness; hence, the covariant derivative is ∇ = ∂ − ieV with the
vector potential possessing only one nonvanishing component given by

Vϕ = �/2π (3)

outside the vortex; here, � is the vortex flux and ϕ is the angle in the polar (r, ϕ) coordinates
on a plane which is transverse to the vortex. The Dirichlet boundary condition on the edge
(r = r0) of the vortex is imposed on the scalar field:

ψλ|r=r0
= 0, (4)

i.e. quantum matter is assumed to be perfectly reflected from the thence impenetrable vortex.
Provided the orthonormalization condition is satisfied,∫

d3x ψ∗
λψλ′ = 〈λ|λ′〉, (5)

the solution to (2) and (4) in the case of the impenetrable magnetic vortex of thickness 2r0

takes the form

ψknkz
(x) = (2π)−1 eikzz einϕβn(kr0)

× [Y|n−e�/2π |(kr0)J|n−e�/2π |(kr) − J|n−e�/2π |(kr0)Y|n−e�/2π |(kr)], (6)

where z is the coordinate along the vortex,

βn(kr0) = [
Y 2

|n−e�/2π |(kr0) + J 2
|n−e�/2π |(kr0)

]−1/2
, (7)

and 0 < k < ∞, −∞ < kz < ∞, n ∈ Z (Z is the set of integer numbers); Jμ(u) and
Yμ(u) are the Bessel functions of order μ of the first and second kinds. It should be noted
that the vortex can be obviously generalized to d-dimensional space by adding extra d − 3
longitudinal coordinates to z; then factor (2π)−1 eikzz is changed to (2π)

1−d
2 eikzz , where z is

the (d −2)-dimensional vector which is orthogonal to the (r, ϕ)-plane in d-dimensional space.
In general, the vacuum energy density is determined as the vacuum expectation value

of the time–time component of the energy–momentum tensor, that is given formally by the
expression

ε = 〈vac|(∂0�
+∂0� + ∂0�∂0�

+)|vac〉 =
∑∫
λ

Eλψ
∗
λ (x) ψλ(x), (8)

which is ill-defined, suffering from the ultraviolet divergencies: the momentum integral
corresponding to the last expression in (8) diverges as pd+1 for p → ∞. The well-defined
quantity is obtained with the use of regularization and then renormalization procedures (see,
e.g., [3]). As to regularization, one employs conventionally either heat-kernel or zeta-
function methods (see, e.g., [2]). As to renormalization, it has been shown [17] that, for
a specific configuration of a vortex through the excluded region, it suffices, irrespective of the
number of spatial dimensions, to perform one subtraction, namely to subtract the contribution
corresponding to the absence of the vortex. This fact owes to the symmetry in the problem,
being of rather general nature. It is consistent, for instance, with a more recent result obtained
in a quite different setup in paper [18], where the Casimir energy per unit length for n non-
overlapping parallel cylinders of infinite length in three-dimensional space is shown to be
directly related (without the need of an extra subtraction or an extra counter-term) to the
Casimir energy for n non-overlapping discs in two-dimensional space.

Thus, the renormalized vacuum energy density in the case of the finite-thickness vortex
takes the form

εren = (2π)1−d

∫
dd−2kz

∫ ∞

0
dk k

(
k2

z + k2 + m2
)1/2

[S(kr, kr0) − S(kr, kr0)|�=0], (9)

3
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where, in view of (6),

S(kr, kr0) =
∑
n∈Z

β2
n(kr0)[Y|n−e�/2π |(kr0)J|n−e�/2π |(kr)

− J|n−e�/2π |(kr0)Y|n−e�/2π |(kr)]2. (10)

Owing to the infinite range of summation, the last expression is periodic in the flux � with
period equal to 2πe−1, i.e. it depends on the quantity

F = e�

2π
−

[[
e�

2π

]]
, (11)

where [[u]] is the integer part of quantity u (i.e. the integer which is less than or equal to u).
Let us rewrite (10) in the form

S(kr, kr0) = S0(kr) + S1(kr, kr0), (12)

where S0(kr) corresponds to the appropriate series in the case of the vacuum polarization by
a singular magnetic vortex [9–11]:

S0(kr) =
∞∑

n=0

[
J 2

n+F (kr) + J 2
n+1−F (kr)

] =
∫ kr

0
dτ [JF (τ)J−1+F (τ ) + J−F (τ )J1−F (τ )], (13)

and S1(kr, kr0) is a correction term due to the finite thickness of a vortex:

S1(kr, kr0) = 2
∞∑

n=0

[
Jn+F (kr0)Yn+F (kr)

Jn+F (kr0)Yn+F (kr) − Yn+F (kr0)Jn+F (kr)

J 2
n+F (kr0) + Y 2

n+F (kr0)

+ Jn+1−F (kr0)Yn+1−F (kr)
Jn+1−F (kr0)Yn+1−F (kr) − Yn+1−F (kr0)Jn+1−F (kr)

J 2
n+1−F (kr0) + Y 2

n+1−F (kr0)

]

−
∞∑

n=0

[
J 2

n+F (kr0)
J 2

n+F (kr) + Y 2
n+F (kr)

J 2
n+F (kr0) + Y 2

n+F (kr0)

+ J 2
n+1−F (kr0)

J 2
n+1−F (kr) + Y 2

n+1−F (kr)

J 2
n+1−F (kr0) + Y 2

n+1−F (kr0)

]
. (14)

In the absence of the magnetic flux in the tube we have

S(kr, kr0)|�=0 = S̃0 + S̃1(kr, kr0), (15)

where

S̃0 = J 2
0 (kr) + 2

∞∑
n=1

J 2
n (kr) = 1, (16)

and a correction term due to the finite thickness of an empty tube:

S̃1(kr, kr0) = 2

[
J0(kr0)Y0(kr)

J0(kr0)Y0(kr) − Y0(kr0)J0(kr)

J 2
0 (kr0) + Y 2

0 (kr0)

+ 2
∞∑

n=1

Jn(kr0)Yn(kr)
Jn(kr0)Yn(kr) − Yn(kr0)Jn(kr)

J 2
n (kr0) + Y 2

n (kr0)

]

−
[
J 2

0 (kr0)
J 2

0 (kr) + Y 2
0 (kr)

J 2
0 (kr0) + Y 2

0 (kr0)
+ 2

∞∑
n=1

J 2
n (kr0)

J 2
n (kr) + Y 2

n (kr)

J 2
n (kr0) + Y 2

n (kr0)

]
. (17)

Thus, vacuum energy density (9) depends on F (11), i.e. it is periodic in the flux � with a
period equal to 2πe−1. Moreover, relation (9) is symmetric under the substitution F → 1−F ,
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vanishing at F → 0 (F → 1) and, perhaps, attaining its maximal value at F = 1/2.4 Relations
(13) and (14) are simplified at F = 1/2:

S0(kr)|�=πe−1 = 2

π

∫ 2kr

0

dτ

τ
sin τ, (18)

and

S1(kr, kr0)|�=πe−1

= 2
∞∑

n=0

J 2
n+ 1

2
(kr0)

[
Y 2

n+ 1
2
(kr) − J 2

n+ 1
2
(kr)

] − 2Jn+ 1
2
(kr0)Yn+ 1

2
(kr0)Jn+ 1

2
(kr)Yn+ 1

2
(kr)

J 2
n+ 1

2
(kr0) + Y 2

n+ 1
2
(kr0)

.

(19)

Since it is hardly possible to evaluate sums in (14) and (17) analytically, our further
analysis will employ numerical calculation. In the following we restrict ourselves to the case
of F = 1/2 and d = 2, when the expression for the vacuum energy density takes the form

εren = 1

2π

∫ ∞

0
dk k(k2 + m2)1/2G(kr, kr0), (20)

where

G(kr, kr0) = S(kr, kr0)|�=πe−1 − S(kr, kr0)|�=0. (21)

3. Numerical evaluation of the vacuum energy density

We rewrite (20) in the dimensionless form

r3εren = 1

2π

∫ ∞

0
dz z

√
z2 +

(mr0

λ

)2
G(z, λz), (22)

where λ = r0/r , λ ∈ [0, 1]. Let us point out some analytical properties of the integrand
function in (22): it vanishes at the edge of the vortex

lim
λ→1

G(z, λz) = 0; (23)

at large distances from the vortex the case of a singular vortex is recovered:

lim
λ→0

G(z, λz) = S0(z)|�=πe−1 − S̃0; (24)

at small values of z one gets

G(z, λz)|z→0 = −[ln(λ)/ ln(λz)]2. (25)

Numerical analysis indicates that in the calculation of the function G(z, λz) one can use
series in (17) and (19) with finite limits, namely for calculating G(z, λz) at point z = z′ it is
enough to cut off the summation limits by n = [[z′ + 30]]. In this case the relative error is∣∣∣∣G(z, λz)|n∈(0,[[z+30]]) − G(z, λz)

G(z, λz)

∣∣∣∣ < δ(λ), δ(λ) < 10−17, λ ∈ [1/10, 9/10]. (26)

It can be shown that the envelope of G(z, λz) is an exponentially decreasing function at large
z, see figure 1. So, for the finite-thickness magnetic vortex we can compute values of the

4 At least, this is certainly true in the case of the singular vortex both for the Bohm–Aharonov [5] and the Casimir–
Bohm–Aharonov [6, 9–11] effects.
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Figure 1. Behaviour of G(z, λz) at different values of λ.

Figure 2. The location of roots of G(z, λz) at λ = 0.7.

dimensionless quantity r3εren (22) for different (not very small) values of λ. To do this, we
have to be able to perform integration in (22) with high precision. This is carried out in the
following way.

As one can see from figure 2, the function G(z, λz) is negative from z = 0 to the
first function root at z = z1 (z1 
= 0). So, the appropriate integral in (22) is negative. The
subsequent roots are denoted by z2, z3, etc. Because of the decreasing character of the envelope
function the integral from z1 to z3 will be positive. It is useful to define a period of the function
G(z, λz) as an interval between two next to neighbouring roots, i.e. from z1 to z3, from z3 to
z5 and so on. Then the full integral in (22) will be a sum of the negative integral from z = 0 to
z = z1 and a multitude of positive integrals over subsequent periods. In the case of sufficiently
small transverse size of the tube (mr0 < 0.1) the integrals over some finite number of first
periods may be negative but thereupon they become and remain positive also.

For small z (z � 20) we make a direct integration of the function G(z, λz) over periods
using 25 digits of precision in internal computations.

6
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Figure 3. r3εren at mr0 = 3/2 as a function of x.

For large z we make integration for each period separately. To carry this out we create
a table of values of the function G(z, λz) for a separate period and replace this function by a
more simple function in the form

Gint(z, λz) = a
e−bz

zc

Aq(z
2)

Bq(z2)
sin(kz + j ln z + φ0), (27)

where the sine function ensures that roots of Gint(z, λz) coincide with roots of G(z, λz); Aq(y)

and Bq(y) are q-degree polynomials, q can be 3, 4 or 5; all unknown parameters can be found
from an interpolation procedure. We allow a relative error of interpolation to be∣∣∣∣Gint(z, λz) − G(z, λz)

G(z, λz)

∣∣∣∣ < 10−8 (28)

for each period. The function Gint(z, λz) can be immediately integrated with the required
accuracy. In this way we made integration up to z � 100/λ with an absolute accuracy up to
10−17.

With the help of the above procedure we obtain a table of contributions from integration
over each period, extrapolate this table to infinity and after that we find the full integral in
(22) as a sum of the negative integral over first period(s), a multitude of positive integrals over
periods up to z � 100/λ and an interpolation term. The absolute accuracy of the obtained
result is 10−13. It should be noted that nearly 99% of the integral value in (22) is obtained by
direct calculation and only nearly 1% is the contribution from the interpolation.

The dimensionless quantity r3εren (22) is a function of two dimensionless parameters, mr0

and mr . Using the above-described procedure, we calculate r3εren at several values of mr0

as a function of the dimensionless distance from the edge of the vortex, x = m(r − r0),
in the range 0 < x < 3mr0. Further increase of the distance from the vortex results
in a significant increment of computational time, because there the envelope of G(z, λz)

fails to be a sufficiently decreasing function as it is at smaller distances. The results of
our numerical calculations are presented in figures 3–7, where r3εren is along the ordinate
axis and x is along the abscissa axis; solid lines are interpolating the dots that have been
calculated.

The typical behaviour of r3εren is clearly illustrated in cases mr0 � 1 by figures 3 and 4.
The vacuum energy density is zero at the edge of the vortex (at x = 0), starts increasing by
some power law xα with α > 1, reaches maximum at x ∼ 1 and decreases at larger distances
to zero (probably exponentially as e−x). However, as mr0 decreases, the available range of x is

7
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Figure 4. r3εren at mr0 = 1 as a function of x.

Figure 5. r3εren at mr0 = 1/2 as a function of x.

Figure 6. r3εren at mr0 = 10−1 as a function of x.

shrunk due to above-mentioned restriction x < 3mr0. In the case of mr0 = 1/2 a maximum
at x ∼ 1 is clearly seen (figure 5), and a following decrease to zero may be anticipated. In the

8
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Figure 7. r3εren at mr0 = 10−4 as a function of x.

Figure 8. r3εren at r0 = 0 as a function of mr .

cases of mr0 = 10−1 (figure 6) and mr0 = 10−4 (figure 7) one may suppose that there will be
a maximum at x ∼ 1 and a following decrease to zero. But, one can be sure for certain from
figures 3–7 that the vacuum energy density decreases to zero as xα with α > 1 at x → 0.

As to values of the vacuum energy density, they are rapidly decreasing as the parameter mr0

increases and becomes more than unity. Namely, the maximal values of r3εren are 3.3 × 10−7

at mr0 = 1/2 (figure 5), 2.1 × 10−9 at mr0 = 1 (figure 4) and 2.2 × 10−11 at mr0 = 3/2
(figure 3). These should be compared with much larger values which are already attained
below maxima in figures 6 and 7: 3.5 × 10−5 at mr0 = 10−1 and 7 × 10−5 at mr0 = 10−4. It
should be noted that, in the case of the singular vortex (mr0 = 0), the maximal value of r3εren

is (12π2)−1 ≈ 8.5 × 10−3 [9]; the appropriate plot of r3εren as a function of mr is taken from
[11] and is presented in figure 8. Thus, one may suppose that, in the case of the vortex with
thickness in the range 0 < mr0 < 10−4, the maximal value of r3εren will be somewhere in
the range 10−4–10−3. For more clarity, the results of figures 6 and 7 are plotted as functions
of variable r/r0 = λ−1 in figure 9. Note that, as mr0 falls by three orders from 10−1 to 10−4,
quantity r3εren changes by factor 2 only. This should be compared with r3εren at m = 0,
which is plotted as a function of r/r0 in figure 10; the latter plot coincides actually with that
corresponding to mr0 = 10−4 in figure 9. It should be noted also that at sufficiently small

9
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Figure 9. r3εren at the smallest values of mr0 as a function of r/r0.

Figure 10. r3εren at m = 0 as a function of r/r0.

distances from the vortex edge (at r − r0 � m−1) the behaviour of r3εren coincides with that
in the m = 0 case.

4. Discussion of the results

We have studied the influence of finite thickness of the impenetrable magnetic vortex on the
vacuum polarization of the quantized charged massive scalar field. Since units c = h̄ = 1 are
used, the London flux value is 2πe−1, and we show that induced vacuum energy density (9)
is periodic in the value of the vortex flux �, vanishing at integer multiples of the London flux
value (at � = 2πne−1) and being presumably maximal at half of the London flux value (at
� = π(2n + 1)e−1). If the vortex thickness decreases, r0 → 0, or a distance from the vortex
increases, r − r0 → ∞, then the contribution of S1(kr, kr0) (14) and S̃1(kr, kr0) (17) to (9)
tends smoothly to zero, and the vacuum energy density converges with that induced by the
singular magnetic vortex.

Our numerical analysis of the vortex thickness effects has been carried out for the case
of the vortex flux equal to half of the London flux value; the quantized scalar field is confined
to a plane which is orthogonal to the vortex. As follows from this analysis, the vacuum

10



J. Phys. A: Math. Theor. 43 (2010) 175401 V M Gorkavenko et al

polarization actually disappears, when the transverse size of the vortex (r0) exceeds the
Compton wavelength of the scalar particle (m−1): the maximal value of the induced vacuum
energy density falls by two orders from 2.6×10−10m3 to 1.4×10−12m3 as mr0 increases from
1 to 3/2.

This result should be compared with the influence of the vortex thickness on the
conventional Bohm–Aharonov effect. In the framework of first-quantized theory, one
considers elastic scattering of a quantum-mechanical charged particle on the impenetrable
magnetic vortex of thickness 2r0. The incident wave is characterized by momentum p, so
the dimensionless parameter of the problem is pr0. In the long-wavelength limit, pr0 → 0,
scattering converges with scattering on the singular magnetic vortex [8]. Since the short-
wavelength limit, pr0 → ∞, corresponds to the case when quasi-classical approximation is
applicable, one would anticipate that the purely quantum effect, as is the Bohm–Aharonov
one, disappears in this limit. As it has been shown in [7], this anticipation is indeed confirmed,
and scattering in the pr0 → ∞ limit converges with scattering of a classical point particle on
the impenetrable tube, being independent of the enclosed magnetic flux.

In the framework of second-quantized theory, one considers the vacuum polarization in the
background of the impenetrable magnetic vortex. The appropriate dimensionless parameter
is mr0, and, as we have shown in the present paper, the Casimir–Bohm–Aharonov effect
disappears in the mr0 → ∞ limit becoming actually negligible at mr0 > 3/2.

In the case of the singular magnetic vortex, the induced vacuum energy density diverges at
the location of the vortex [6, 9–11]. As it has been shown in the present paper, this divergence
is unphysical, disappearing when thickness of the impenetrable magnetic vortex is taken into
account: under the Dirichlet condition for the quantized field (4), the induced vacuum energy
density is vanishing as (r − r0)

α with α > 1 at the edge of the vortex. Therefore, the vacuum
energy which is induced on the whole transverse plane,

Eren = 2π

∫ ∞

r0

dr rεren, (29)

is finite, contrary to the case of the singular vortex when it is infinite. Although we are unaware
of the value of Eren, the maximal value of εren is estimated to be somewhat of the order of
10−3m3 if mr0 < 10−4.

A brief discussion of polarization of the vacuum of the quantized massless scalar field is
in order. In this case, the induced vacuum energy density is zero at the edge of the vortex, starts
increasing as (r − r0)

α with α > 1 (see figure 10), reaches its maximum and then decreases
with asymptotics (12π2r3)−1 [9–11]. Induced vacuum energy (29) is finite in this case also.

The finite-thickness vortex can be formed as a topological defect appearing after a phase
transition with spontaneous breakdown of the gauge symmetry [19]. Such a structure under
the name of a cosmic string [20, 21] is currently discussed in various contexts in cosmology
and astrophysics, see, e.g., [22, 23]. The cosmic string is characterized by the flux 2πe−1

H ,
where eH is the coupling constant of the Higgs scalar field to the string-forming gauge field;
the transverse size of the string is of the order of correlation length m−1

H , where mH is the
mass of the Higgs scalar field. Then, as it follows from our consideration in the present
paper, the cosmic string can polarize the vacuum of quantum matter only in the case when
the mass of the matter field is much less than that of the Higgs field, m � mH. For instance,
the cosmic string which is formed at the grand unification scale can polarize the vacuum
of the electroweak theory, whereas the would-be cosmic string corresponding to the
electroweak symmetry breaking has no impact on the vacuum of quantum matter at the
grand unification scale.
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